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THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science
Institute for Management Science and Engineering

THE METHOD OF CONTRACTING ELLIPSOIDS

by

James E. Falk

1. Introduction

The October 6, 1979 issue of Science News [1'] featured a cover
story entitled "Linear Programming: Solid New Algorithm,'" which an-
nounced the discovery of a "totally new algorithm for linear program-
ming" by the Soviet mathematician L. G. Khachian. Secience [6]) devoted
a page and a half of their November 2, 1979 edition to the event,
hinting that even the difficult traveling salesman problem might now

be rendered tractable.

The New York Times took over, in articles on November 7, 11, and
27, 1979, amplifying the potential applications of this "surprise dis-

covery by an obscure Soviet mathematician."

The genesis of all this publicity was an article by L. G.
Khachian appearing in the January-February 1979 issue of Doklady en-
titled "“A Polynomial Algorithm in Linear Programming" [4]. English
translations of the Russian version appeared later. Hungarian mathe-
maticians Gacs and Lovasz, then at Stanford, distributed a set of their
notes on Khachian's paper, which included some variations, comments, and

proofs of Khachian's results [2].

The purpose of this paper is to set down a detailed description

of the algorithm, including proofs not available in the aforementioned
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sources. The title, "The Method of Contracting Ellipsoids," is chosen

to accurately reflect the nature of the algorithm. It is used in pref-
erence to the currently common description, "Khachian's Method," since
the algorithm itself has roots in literature predating Khachian's paper
(as he himself points out) in articles published by N. Z. Shor {9], [10],
D. B. Yudin and A. S. Nemirovskii [13], and A. Yu. Levin [7]. As we will
point out, Khachian's (very significant) contribution was to establish

the polynomial property of the method when applied to a system of strict

linear inequalities.

2. Geometrical Description of the Method

Consider a system of linear inequalities (see Figure 1) describ-

ing a set F cr" enclosed in an ellipsoid EO with center x . It

0
If x € F , we are done; other-

wise there is some linear inequality ax < B which is violated by x0 ’

is desired to locate a point x € F .

i.e., axo >B8 .
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Figure 1.--Contracting ellipsoids. :

Then the set F CZE1 , Where El is an ellipsoid of minimal

volume containing the set Eo N {x: ax < axo} . The new ellipsoid E1

-2 -
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has center xl » which is then tested for feasibility to F , and the

method continues by replacing EO and x0 by E1 and x1 .

0
Thus a sequence E ,El,... is generated. We will show that
the volumes v(Ek) decrease geometrically by a factor which is a func~

tion of the dimensionality n of the space Rn . Assuming F 1is not
empty, the ellipsoids will tighten up in volume around S , so that
eventually an ellipsoid will be produced with center in F ,

3. Derivation of the Method

In this section we will derive the updating formulas for the

Method of Contracting Ellipsoids. The algorithm is summarized below.

3.1 The Method of Contracting Ellipsoids

We wish to solve (or establish the insolvability of) the system

Ax <b , where A is mXn and b is mx1l .

. Start: Locate x € R' and a radius r > 0 such that the
sphere {x: ||x - x|| < r} contains a feasible point (if any). Set

J=rl.

Step: Test the point x for feasibility. If x 1is not

feasible, identify a constraint ax < B such that ax > 8 .
(1) Set

_ ax - B
§ = 7T 0V

+
If 8§ > 1, there is no solution. If § =1, x below
is the only solution, provided it is feasible.

+ - (n5+l) JTJa

(ii) x = x- {7 TTTT'TT . 2)

-

el . € st G
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1

2\ 1 T
+ 1-8 (n-1) (1-8)\?\ Ja(Ja)
(iii) J = n( ) [[ - (1- ) J . (3)
nZ_l ((n+1) (1+(S)> | IJal IZ

These formulas differ from thosc presented by Shor {10] and Kha-
chian, primarily by the inclusion of the factor 6 above. This factor
is related to a deeper cut than the aforementioned authors report (they
take 8§ = 0 ), and leads to faster convergence. The formulas above were

presented by Wolfe [12], and will be derived herein.

In the material which follows, B denotes a symmetric, positive

definite matrix with eigenvalues Al""’xn . Thus,

B=PUDP, (4)

where P 1is an orthogonal transformation, and D = diag{ll,...,xn} .

Setting
1
J=D% , (5)

1 1 L
where D? = diag{kz,...,A;} , we have an equivalent factorization of

B as

B=Ju . (6)

Given B and a vector ;-, E(B,;) , or, more simply E , will

denote the ellipsoid

E = E@B,x) = {x: (x-0)" B (x-%) <1} .

Lemma 1: The ellipsoid E 1is an affine transformation T of

the unit sphere S = {y: ||Y||2

< 1} . Specifically,
T(8) = E,
- T
where T(y) = x+Jy.
...T _1 —
Proof: (x~x)" B (x-x) £ 1 1is equivalent to
1, -1

x0T o™ o <1

-4 -
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Setting y = (JTl)T(x—;) establishes the result.

Figure 2 illustrates this lemma. Note that J 1is nonsingular

from (5). Lemma 1 will be used extensively, since it is easier to work

with spheres than ellipsoids.

Figure 2.--Ellipsoids are affine transformations of spheres.

Lemma 2: The volume of E is

n 1
v(E) =( I A‘)v(s) ,
=1

where v(s) 1is the volume of the n dimensional sphere.

Proof: From the previous lemma, E is image of the unit

sphere S under the transformation T(y) = x + JTy . Therefore,

Idet(JT)I v(s)

v(E)

1
|det D?| |det P| v(s)

no
M A% v(s) ,
j=1 3

1,
since D? is diagonal and P 1is orthogonal.

)

W, 220, WP
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This lemma will prove useful in two places, the first in estab-

lishing the formulas for a minimal volume ellipsoid encapsulating a
given region, and also in computing the decrease in successive volumes

as the algorithm progresses.

Turning attention to the sphere, we define a "truncated sphere"

S(e],d) as

sl =z flell <1, 2 28,

1 T
where e = (1,0,...,0) and 0 <6 <1 . Figure 3 illustrates this

definition. We wish to encapsulate S(el,G) in an ellipsoid E of

e e e T ot s S TN 4 g = -

minimal volume.

Figure 3.~-A truncated sphere.

We will restrict our attention to candidate ellipsoids of the

~oa 2 2 2
form E(B,z) = {z: T (20" + zp 4+ Tz < 1} , which contain

s N {z: z, = 8§} and e1 on 9K .

Lemma 3: The ellipsoid E(B,z) = {z:(Tl—E)Z + Tzzi + ... +

B3 Ty P PR AT IR Y SR

Tnzi < 1} of minimal volume which contains the surface of the sphere
1
i {z: [|z]] = 1, z; = 8} and the point e has
~ §+1 T
. z = (%ﬁﬁf’ 0, «vv, 0)
-6 -
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n -1 n -1

2 2 .2 2 2
- n(1-%) n~ (1-89) n (1-6%)
B = diag ( il ) , ( 3 ), eeny (——7?—-—> .

Proof: We will first characterize the values of Tl,...,Tn
and £ , which yield a minimal volume ellipsoid containing only the
points e1 and the n-1 points (6, /T:ET, 0, ..., 0), ...,

.(6, 0, ..., 0, v1-6%) . We will then show that the resulting E con-

tains all of S(el,d)
. 1 =

Since e € 9E , we have

2
Tl(l’g) = l ’
while (8, 0, ..., 0, V1-8%, 0, ..., 0) € 3E implies
2 2
11(6-5) + tk(l-5 )y =1, for k=2,...,n :

1

T =
(1-6)*

1

and
A o
(1-8%) (1-£)

T

K =2, c0.,0 &

Thus, using (7), we have

Tn-l

2 2

w(E) = [(1-9)| (1'62)(1'5) 7| v(s)
(1-8)° - (6-8)7|

It is easier to work with vz(ﬁ) , and since this is minimized at the

same value of £ as is v(E) , we lose no generality. Thus,

v2(E)

2 2 n-1
(1-5) [ (02 (125) 2] V2 (s)
(1-£)" - (8-8)
2n 2.,n-1
= (l-gg (1-8 )2 —) vz(s)
[(1-E)" - (8-6)7)

-7 -
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This quantity is minimized when its log is minimized, so, taking the
derivative of the log of VZ(E) , and setting it to zero, we obtain
. &+
g = 0K (8)

n+l
as the (unique) point which satisfies the resulting equation. A check
2 .
of the second derivative of the log of v (E) establishes that the

above & minimizes.

We thus have

1. = ( n+1___)2
1 n(1-9)
and 9
1
(-
T, = , k=2,...,n
£ a-h

Equations (8) and (9) define the minimum v.lume eli.psoid containing
(1,0,...,0) and the (n-1) points of the form (S, 0, ..., 0, V1-82,
0, ..., 0

1 ~
Finally, we must show that all of S(e ,8) 1is contained in E .

Set
T = n2 - L (=1, = =T )
- = e e e - ,
nz(l—dz) 2 n
so that
571 - diag{Tl, Ty evey T}
Noting that
Tl - T+ %;n+1)(6n+%; ,
n (1-8)(1-87)
we have
-8 -
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e P - e - . -
(z—z)TB “(z-2) zTB 1z - 2zB lz + zTB lz

o] |? + HEDEMD 2G5 w1 a)?
n®(1-8) (1-6°) !

1 111
2
21\ 1 2 . 2(n+l) (Sn+l) 2
L2 z] )7+ SpaE2ione)
( n’ ><1-5;> n2(1-8) (1-6%) !

2
_ o f(o+1) On+1)] _On+l
2( )zl + (n(l—é))

Now, adding and subtracting coefficients of ||z||® , zi , and

z, , we obtain

1

Nl L e B e e

) n(1-6) (1-6%)
+2< \

D\ 1
' )\I:x t)tzmh
-G
nl(1-0)2 ST n? J\1-62

2
* (thfé)>

But the first three terms are less than or equal to zero, while the last

1
I
n+l

+ 2

three terms sum to

2(nt) (Br+1) (=8) + (n°-1) (1=8) + (Snr))’(148) |,
2 (1-8) 2 (148)

so that

(z-7) B Yzm7) <1,

S(el,a) cE,

and the proof is complete.

-
e
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Having now worked out the formulas for enclosing a truncated
sphere, the next step is to translate our results to apply to a trun-

cated ellipsoid.

Suppose we have an ellipsoid E = E(B,x) , and suppose asx > B .

We shall assume E contains points in E satisfying a°*x < B . As

e1 was the point of tangency of the hyperplane {z: z) = 1} to the

sphere in z-space, we wish to locate the point t which is the point of

tangency of the hyperplane {x: a*x = ast} and the ellipsoid E (see

Figure 4).

Figure 4.~-Definition of t .

Lemma 4: Given an ellipsoid E(B,x) and a half space

{x: a*x < B} , the point t which lies in this half space and is tan-

gent to JF and the hyperplane {x: a*x = ast} is

Proof: t solves the problem
minimize a-°x

subject to (x;;)TB_l(x‘;) 21

This is a convex program with feasible region having a nonempty interior,

so the first order optimality conditions are necessary and sufficient.

Thus there is a u > 0 such that

- 10 -

£ = x- (Tl?laT[) JTia . (10)
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a+u(287(tx)) =0 . (11)

Thus

(E-"Ta + 200 B HE% = 0

and, since t € 9E R

- ——

(E;;)Ta + 2u=0.

Also, from (11),

Ba + ZU(E;;) =0,

e e e T e S

so that
T .
a'Ba + 2u(-2u) = 0 ,
i.e.,
u= /aTBa .
or, since B = JTJ R
u = %||Jal| .
' Thus, from (11) again,
- - 1 ) T
: t = x - J Ja .
: (llJa |

We now have the ingredients to derive the equations (1), (2), and
(3) defining the Method of Contracting Ellipsoids. We need only take
care that the transformations introduced to transform ellipsoids into

spheres and back again are properly applied.

Lemma 5: Let FE(B,x) , a , B, and t be as given in Lemma 4.

Then the transformations

y = (5 Txx) (12)

and

z=Qy, (13)

where QTQ =1, (Q)1 = -(TngTT)(Ja)T , take E onto the unit sphere in

-~
£

- 11 -

P AR . <o e .




T-418

z-space, with t = e1 , and {x: a*x < B} » {z: zl > 8} , where & =

a*x-f

-rFi;TT . (See Figure 5.)

* ————

T —y
\ 2

e a2

Figure 5.--Transforming t into e

Proof: The first transformation was derived in Lemma 1. The

image of t under this transformation is

7= HEx

- T, -1 1 T
W = -_—
@7 (- rgay)
[
7
= (Tr‘—n'Ja ) Ja .
5‘1
.
’ We now wish to construct Q so that
‘ qq = e'
[ Since Q will be orthogonal, and since ||q]| = 1 , we may set its

first row

=T _ _ 1 T
(Q)l-q = TD‘;”(JE) ,

(j#1) are arbitrary, except that they must be

RIS

and the other rows ()

3

¢ mutually orthogonal, have norm 1, and be orthogonal to (Q)1 .

L
o
&
4,

-12 -
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With these two transformations now defined, we wish to investi-

gate the image of the hyperplane a*x = § in z-space. Now
asx = R
if and only if
al(Ty+%) = 8
from (12) above. Then, from (13), the above is true if and only if

aldlQlz B - a'x . (14)

Since the first column of QT is a'= (- TngTT) Ja , the co-

efficient of z1 above is

aTJT (- TTézTT> Ja = -||Jal| .

Also, since columns 2 through n of QT are orthogonu.?! co (Ja) , the

coefficients of z, through z, are zero. It follows that the hyper-
plane aex =  is transformed into the hyperplane

“ll3allz, = B-ax

z = asx - B
1 llJall

Finally, since the image of t is el , and since a*t < B , it must

asx - 8

be that 1 > , 1.e.,
“= ]IJaII

{x: a*x < B} is transformed into ({z: 2, > 8},

where & = a'x - 8
'TIJall
We are now in a position to derive the formulas for the Method of
Contracting Ellipsoids. To that end, we suppose that a feasible point
of the set F = {x: Ax < b} 1is contained in an ellipsoid E = E(B,x) .

The center x is assumed to be infeasible; i.e., we assume that at least

-13 -

c e



St et e i v _gmage .

- —————

;
®

T
R
¥
!
£

Py

- F
s

4

2}

3

P4
-
3

: %
-

3
%
g

Yt

= S,

T-418

a*x < B of the system Ax < b is violated by

E N {x: a*x < B} in an ellipsoid

one of the constraints

X . We then surround the set

+ o+, o+ + .
E =E (B ,x ) of minimal volume. As E must contain a point feasi-

+
ble to F , and, as we shall show, E has a smaller volume than E ;

+
it is more likely that x is feasible to F .

All that remains is to derive the proper formulas for B+ and

- +, 4+ +
Theorem 1: Assume F CE(B,x) . Then FCE (B ,x ) , where

+ +
X and B are given by

_a-x - B
R I FE A

nd+l ) 3T5a

‘s +_ o +1
@ "= - (1) 1750

2\? 1 T
.. + _ [1-8 _ _ (=1)(1-9)\*) Ja(Ja)
(i) J° = “( 2 ) L ( ((n+1)(1+6)) ) 2] |2 I

n -1

where a*x < B 1is violated by x and B+ = (J+)TJ+ .

Proof: Using the transformations
T.-1, —
y = (37) “(x-x)

z=Qy,

where QTQ =1 and (Q)1 = (— TT%;TT)(Ja)T , we map the set

E N {x: a*x < B} into the set {z: z, > 8} (Lemma 5). Clearly this

set contains the image of a point feasible to F .

In z-space, the ellipsoid E(B,z) , where

B = diag{(——-——-n(l—a))z, (ﬂz—————-(l—sz)), ceny (“——"uz(l_az )}

n+l n2_l n2_1

- 14 -
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T

~ S+1
z = (%;;i-, 0, ..., 0)

and

contains {z: z) > 8} , and is of minimal volume (Lemma 3). All that

remains is to transform E back into x-space, using the transformation

of Lemma 1, and the Q of Lemma 5.

+
Working on x  first, we have

!
3
2le
P-"+
x
S
i
ah‘
_
e
[+]

from Lemma 5. Then

nd+1 JTJa
- X - (SO

which is formula (ii).

Now working on B+ , we have
2 B ez <1
if and only if
-~ T.T, ~.~1 -
(y-y) @ (B) "Q(y-y) <1
if and only 1if
0T T @ o™ T <1

s0

gt - [J-IQT(E)-IQ(J—I)T]-I

2 2. .2 2,0 2
=5 (1-8

- diag{(n?;_ld)) e 1), L2y - )} Q.
n - n -

- 15 -
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!
Now
dtag (222 )2 o’ (1-8%) n2(1-6b)
EPe=8y) » T 2l T2
n?(1-6%) L - dia {1 _ ((1—b)(n-l)) 0 0 :
2 g (1#b) (n+1)/> 72 o . ;
so that
| o+ - [nrass® T [ - at %1 ) ((l—b)(n—l) o 0} .
2 a8 (1%b) (n¥1) /> O v G Q-
(n"-1)
But since
3"Q" atag(e,0,...,0005 = I@p w3,
where Q1 is the first row of Q , we obtain
01T diag{t,0,...,0}07 = JT C Trfgl[)Ja(t)(—~FT§;TT)aTJTJ
= (—- £ 2)(Ba)(Ba)T 5
{1Jall
i.e.,
. 2, .2 T
, st - (n (1-6 )> B - (1 _ ((1—b)(n-l)>) (Ba)(Ba)” |
12 (1+b) (n+1) IIJaIIZ
It is ecasily checked that the J+ of formula (iii) gives
(J+)TJ+ - gt ’
as above, so we are done.

4. Properties of the Method

Having derived the method, we now turn to some of its properties.

One of the most useful observations is that of the decrease in the vol-

ume of the encapsulating ellipsoids.

T I Y T KON WSS N Fosigre e

. L it Sl & T

- 16 -
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Theorem 2: At each iteration of the method, the volume of the
encapsulating ~llipsoid decreases by the factor

n-1 n-1
-5~ 2\2
2) 2 n n
(1—6)(1-6 ) (EII)<'§">
n -
Proof: Returning to Lemma 5, we note that
+
E = Z(E ) and S = 2(E) ,

where 7 1is the composite transformation =z = Q(JT)-l(x—;) , and § is

the unit sphere. Since affine transformations do not change the propor-

tion of the volume, we have

+ N
v(E) _ v(E)
v(E) v(S)
But
nl
2 2.1 2
~. _n(1-8) In"A-8D)
V(E) = (n-l) [ 2 V(S) 3
n -1
SO
n- n-1
+ - 2 \2
VE) | (1-8y(1-62) 2 ()0
v - O 8 {1-62) (n+1)( 5 ) . (15)
n -1
<___1___) n-1
Corollary: v(ih) < v(®) + \e 20" )15y (1-62) 2 .
Proof: Since et is a convex function, 1+t < et « In
particular,
n_ 1 ThnHl
nil - TS
and
1
2 2
; = 1+ 1 < e -1 .
n -1 n -1
~ 17 -
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[t should be noted here that the factor

n-1
2 2
(i‘_) n
+
n+l n2_1
is close to 1 for large n , producing relatively little decrease in
9 n-1/2
successive volumes. The factor (1-6)(1—6 ) , however, is domi-~
nated by
2(n-1
o=
e s

which, for &8>0 , is small for large n , resulting in significant vol-

ume decrease. Recall § 1is a measure of the infeasibility of the cur-

rent estimate. If § is determined by the formula

AX - b,
i i

the largest decrease in volume per iteration is obtained. Note &8=0
implies that the current point is feasible, whilst &=1 implies that

the next point will be feasible. The next table illustrates the joint

effects of § and n on expression (15).

5. Polynomial Boundedness of the Method

The most startling property of this method, and Khatchian's main
contribution, is that the amount of work required to execute the tech-
nique is bounded by a polynomial function of the problem data. By con-
trast, the popular Simplex Method is not polynomially bounded, as Klee

and Minty [5] pointed out in 1972.

- 18 ~
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5.1 The Klee-Minty example

With the usual pivot selection rule, the problem

3 (n-1)
maximize ) 10 Px.
3=1 ]
subject to x, + 2 Z 10(1“J)x. < 1021_2 » i=1,...,n
i 341 j
X, >0

j T
n-1
takes 2 pivot steps to execute.

Figure 6 (not to scale) illustrates the sequence of vertices

visited by the Simplex Method.

This example is, of course, only valid under the assumption that

the usual pivot selection rule is emploved. Jeroslow "3], however, has

shown that similar examples can be constructed to illustrate that an

exponential amount of work may be required under any entering variable

selection rule.

It should be emphasized that the aforementioned examples only

show that the worst case could occur. Over 40 years of experience with

the Simplex Method have shown that such worst cases seldom, if ever,

occur in practice, and, indeed, the method has proven to be remarkably

efficient for a tremendously wide variety of problems.

The proof of the polynomial boundedness property of the Method
of Contracting Ellipsoids was first established by Khachian [4] and

later refined by Gacs and Lovasz [2}. Since their papers contain a very

detailed proof of the polynomial boundedness property, we shall not
repeat it here, but rather sketch the reasoning behind it.

Suppose we wish to solve (or determine infeasibility thereof)

the system of strict inequalities

Ax < b (16)




et T St At - 68 A - Bt gy

- o~

——

IO TV e R, W, A e 5 s 2 -

ey

S SO,

-y~

T-418
3
I Maximize
100xl + le2 + Xq
Subject to
<
X <1
! <
i 201:1 + X, < 100
<
200x1 + 20x2 + Xy 10,000
x. 20
i=
¢
A
3
Figure 6.--The Simplex Method may visit every vertex.
- 21 -
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where the entries of A and b are integers. Define the constant

m n m
L = [ ¥y 1og2(|aiil+-l) + ) log2(|b1]+-1) + logzmn] +1 .

i=1 j=1 i=1

The following lemma is used in the proofs of the theorems which

follow.

Lemma 6: Let B be a square, nonsingular submatrix of the

matrix [A|b] . Then
|det B| < 2L/n .

|det B

is bounded above by the product of the norms of the rows of B . This

The proof of this lemma is a result of the fact that

fact follows by reducing BB to its diagonal form, and applying the

arithmetic-geometric inequality to R‘Bi , Where Bi is the ith row of

B .) The product of the norms of the rows of B is easily shown to

be bounded by ZL/n .

This lemma is used in the proof of the following pair of theo-
rems. The first theorem establishes an upper bound on norms of any so-

lutions of (16), while the second establishes a lower bound on the vol-

ume of the set of all solutions.

Theorem 3: Any vertex v of the system

Ax < b

satisfics
L
v,| <27/n .
v, |
The proof of this theorem simply looks at vi as expressed by

Cramer's rule, as the quotient of two determinants. The previous lemma

yields an upper bound on the numerator of this quotient, while the de-

nominator is at least one in ahsolute value, since the elements of the

determinant are integers.

- 22 -
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Theorem 4: [If the system
Ax < b (16)

has a solution, then the volume of its interior inside the ball
{x: ||x]|]| < 2"} is at least 27" .
The proof of this theorem begins by establishing the existence of

a nondegenerate simplex generated by vertices vo,...,vn of the system

Ax < b .

Thus, the volume of the solution set described by (16) is bounded below

by the volume of the simplex, which is the absolute value of

L ... 1

1

ol det ( 0 n) .
V s V

But this is shown to be bounded below by 2-nL .
The following theorem establishes the polynomial boundedness of

the method for the system (16).

Theorem 5: 1If (16) has a solution, then the Method of Contract-

ing Ellipscids will locate a solution within [2n(n+1)(2L+1)] steps, if

one starts with an ellipsoid e = {x: [x]] < by

By Theorem 4, if (16) has a solution, then the set of all solu-

tions has volume at least Z—nL . By Theorem 5, an initial ball of

radius 2L will contain the solution of (16), if any. With § set to
0 (the most conservative of settings) the corollary to Theorem 2 yields

a per step decrease of an amount e—[2(n+1)/1] . Therefore, after k

steps, the volume of the enclosing ellipsoid is

k

V(Ek) = e 2(““"1) V(EO)

We wish to determine a value of k such that the volume of the enclos-

ing ellipsoid is Zees than the volume of the solution space.

- 23 -
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Noting that the volume of the initial sphere is less than
(2 x ZL)n ,» the volume of the smallest enclosing box whose sides are of

L . . . .
length 2x27 | it suffices to determine an integer k such that

R 2(n+l) | 2n(L+l) < 2—nL .

i.e.,

k .
—EYH;Iy~+ n(L+1) 2n2 < =-pL Rn2 .

A value of k which satisfies this is
k = [2n(n+l) (2141)] .

Thus, if no feasible point is found after k iterations, there cannot

be a feasible point.

Note that the expression for k is a polynomial in n and L .
Hence the algorithm is polynomially bounded. WNotc al-o that the expres-
sion for k is not particularly tight, as a much tighter, but more com-
plicated bound would result if the exact expression for the contraction
of volumes were used, as well as the exact expression for the volume of

the initial sphere. To obtain this bound, we would seek the smallest

k such that

n-1 o
__r_l__) n2 2 _”2 ank o L 2—nL .0
(n+l n2_] F(P + 1) n! n o,
2

where the right-hand side is a better bound on the volume of the solu-~
tion space. While this is a much tighter bound than derived before,

the polynomial boundedness property is not apparent.

5.2 1s polynomial boundedness desirable?

An algorithm which is known to be polynomially bounded may or
may not be superior to one which is not. Polynomial boundedness is a

desirable characteristic of an algorithm, but may not accurately depict

performance over the long run.

- 24 -
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Dantzig [1] compares the estimated running time of the ellip-
soidal method to the actual running time of a sophisticated implementa-
tion of the Simplex Method on a particular case study. He concludes
that the Simplex Method wins by a ftactor of 30 minutes to 50,000,000
years! This is, however, computed using the loose upper bound and con-

sistently setting &8=0 .

McCall [8] studied the ellipsoidal method in more detail. Among
other negative results, he concluded that "Khachian's algorithm is of

no practical value for real-world LP problems."

A more useful statistic for measuring performance might be the
erpected number of steps required to find a feasible solution to a sys-
tem of linear inequalities. Years of observing the Simplex Method at
work suggest that this number is usually less than 4m , where m is

the number of constraints [1].

In spite of criticism, the practicai import of this method has
yet to be evaluated. Considerable work is on-going. As of February 6,
1980, Wolfe [12] had compiled a list of 23 research references relating

to the new algorithm, and this list is surely out-dated by now (March

25, 1980).

6. How to Solve Linear Programs

Gacs and Lovasz [2] suggest the following scheme to set a linear

program in the required setting. The problem

minimize c¢x

subject to Ax > b P

x >0

and its dual
maximize ub

subject to uA < ¢

u>0

- 25 -
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have solutions if and only if the system

Ax > b
uA < ¢
x >0
u>0

ub > cx

has a solution. The latter is in the required form.

A potential difficulty in solving the latter system is that it
generally will have a unique solution. Small perturbations will yield

approximate solution sets, but with small volumes.

Another variant, employing fewer variables and fewer constraints

. . 0 .
than the above scheme is first to locate a point x feasible to P

using the ellipsoidal method. Then, continue the method by adding the

0 . .
constraint c¢x < cx  to the constrairts Ax - b, x > 0 . Contracting
ellipsoids will continue to encapsulate that portion of the feasible re-

gion which contains any feasible point offering better values to cx

than the current one.

6.1 An example

The following simple example may be used to illustrate the method.

Locate x = (xl,xz) such that

-xy < -1
- x2 <-1
x4 x, < 3.

Table 11 records the data generated by starting with

xX = (0,0)

80 = diag{100,100} ,

with 8 set equal to zero. The modified method is tabulated in Table

- 26 -
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CONVERGENCE IN EXAMPLE, 6= 0
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Iteration # X, x, Row a b11 b12 = b, b,, _T
0 0.000 0.000 (-1,0) 100 0 100
1 3.333 0.000 (0,-1) 44,44 0 133.3
2 3.333 3.849 (1,1) 59,26 0 59.26
3 1.518 2,035 (1,1) 52.67 -26.34 52.67
4 0.309 0.825 (-1,0) 58.53 ~46.82 58.53
5 2.859 -1.215 (0,-1) 26.01 -20.81 44.74
6 1.822 1.014 feasible

IIT. Figure 7 illustrates the sequence of points generated by both

schemes, while Figures 8a through 9g illustrate th- sequence of ellip-

soids generated by both the basic and the "deep cut" schemes.

It is interesting to note that the latter scheme requires one

more iteration than does the unrefined method.

crease in volumes is apparent in the second scheme, however.

- 27 -
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Figure 7.--Convergence of pure and refined methods.
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